OMRON MOS FET Relays

New, High-capacity (2.5-A) MOS FET Relay, Ideal for Analog Signal Switching

- Switches minute analog signals.
- **Low ON-resistance of 0.1** Ω max.
- Continuous load current of 2.5 A.

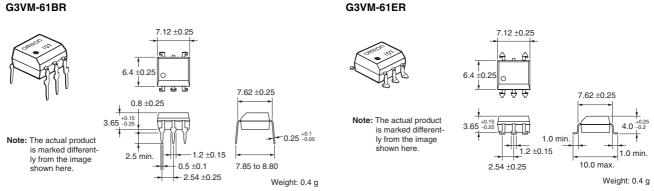
-/!\Caution

Refer to "Common Precautions" on page 2.

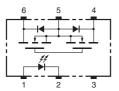
Application Examples

- Measurement devices
- Security systems
- I/O for alarm

List of Models

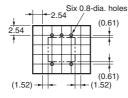


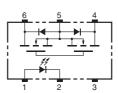
Note: The actual product is marked differently from the image shown here.


Contact form	Terminals	Load voltage (peak value)	Model	Minimum packaging unit		
				Number per stick	Number per tape	
SPST-NO	PCB terminals	60 V AC	G3VM-61BR	50		
	Surface-mounting		G3VM-61ER			
	terminals		G3VM-61ER(TR)		1,500	

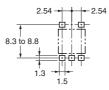
Dimensions

Note: All units are in millimeters unless otherwise indicated. G3VM-61BR




■ Terminal Arrangement/Internal Connections (Top View) G3VM-61BR G3VM-61ER

PCB Dimensions (Bottom View)


G3VM-61BR

 Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-61ER

G3VM-61BR/ER

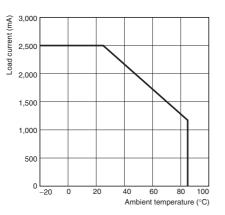
■ Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rating	Unit	Measurement Conditions
Input	LED forward current	I _F	30	mA	
	Repetitive peak LED forward current	I _{FP}	1	А	100 µs pulses, 100 pps
	LED forward current reduc- tion rate	∆l _F /°C	-0.3	mA/°C	Ta≥25°C
	LED reverse voltage	V _R	5	V	
	Connection temperature	TJ	125	°C	
Output	Output dielectric strength	V _{OFF}	60	V	
	Continuous load current	I _O	2,500	mA	
	ON current reduction rate	∆l _{ON} /°C	-22	mA/°C	Ta ≥ 25°C
	Connection temperature	TJ	125	°C	
Dielectric put (See	strength between input and out- note 1.)	V _{I·O}	2,500	Vrms	AC for 1 min
Operating	g temperature	Τ _a	-20 to 85	°C	With no icing or condensation
Storage to	emperature	T _{stg}	-40 to 125	°C	With no icing or condensation
Soldering temperature (10 s)			260	°C	10 s

lote 1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

■ Electrical Characteristics (Ta = 25°C)

	Item	Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions	
Input	LED forward voltage	V _F	1.18	1.33	1.48	V	I _F = 10 mA	Note 2. Turn-ON and Turn- OFF Times
	Reverse current	I _R			10	μA	V _R = 5 V	
	Capacity between terminals	CT		70		pF	V = 0, f = 1 MHz	
	Trigger LED forward current	I _{FT}		1.0	3	mA	I _O = 1 A	2 4 Vour
Output	Maximum resistance with out- put ON			0.065	0.1	Ω	I _F = 10 mA, I _O = 2 A	
	Current leakage when the re- lay is open	I _{LEAK}		1.0	10	nA	V _{OFF} = 60 V	
Capacity between I/O terminals		C _{I·O}		0.8		pF	f = 1 MHz, V _s = 0 V	VOUT 100/ 190%
Insulation resistance		R _{I-O}	1,000			MΩ	$\begin{array}{l} V_{I\cdot O} = 500 \ V \ DC, \\ R_{OH} \leq 60\% \end{array}$	
Turn-ON time		tON		1.0	1.5	ms	I_F = 10 mA, R_L = 200 Ω , V_{DD}	
Turn-OFF time		tOFF		0.2	0.4	ms	= 20 V (See note 2.)	


Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Output dielectric strength	V _{DD}			48	V
Operating LED forward current	I _F	10		20	mA
Continuous load current	I _O			2,500	mA
Operating temperature	Ta	25		60	°C

Engineering Data

Load Current vs. Ambient Temperature G3VM-61BR/ER

Safety Precautions

Refer to page 2 for precautions common to all G3VM models.